

ELSEVIER

Available at www.sciencedirect.comjournal homepage: www.elsevier.com/locate/he

Investigation on sulfuric acid sulfonation of in-situ sol–gel derived Nafion/SiO₂ composite membrane

Chang-Chun Ke ^{a,b}, Xiao-Jin Li ^{a,*}, Qiang Shen ^{a,b}, Shu-Guo Qu ^{a,b}, Zhi-Gang Shao ^{a,**}, Bao-Lian Yi ^a

^a Laboratory of Fuel Cell System & Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
^b Graduate School of Chinese Academy of Sciences, Beijing 100049, PR China

ARTICLE INFO

Article history:

Received 18 July 2010

Received in revised form

29 November 2010

Accepted 7 December 2010

Available online 13 January 2011

Keywords:

High Temperature

Proton exchange membrane fuel cell

Silica

Sulfonation

Composite membrane

Nafion

ABSTRACT

In this paper, an effective method to cover the conductivity loss of Nafion/SiO₂ through sulfonation and its mechanism are studied. Nafion/SiO₂ composite membranes are prepared via an in-situ sol–gel route, and then sulfonated with concentrated sulfuric acid (marked as Nafion/S-SiO₂). The effects of the sulfonation on properties of the Nafion/SiO₂ composite membrane are investigated. The results show that sulfonation can improve the proton conductivity of the Nafion/SiO₂ effectively, though it brings water-uptake loss to the composite membrane to some extent simultaneously. According to the results of FT-IR, UV resonance Raman spectroscopy, ²⁹Si solid-state MAS NMR and XRD, it's proved that higher conductivity of Nafion/S-SiO₂ should be relevant to hydrogen bonds & chemical bonds between SiO₂ nano particles and sulfuric acid molecules. While, lower water uptake & swelling ratio should be caused by hydroxyl-elimination on the surface of SiO₂ nanoparticles during sulfonation. Single cell tests show that the performance of Nafion/S-SiO₂ composite membranes substantially exceeds Nafion/SiO₂ at 110 °C and 59%RH, and in the initial testing stage no performance reduction is observed.

Copyright © 2010, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Proton Exchange Membrane Fuel Cell (PEMFC) is one type of the most important new energy conversion technologies [1]. Recently, improving the working temperature of the PEMFC is an important research field. Because working at an elevated temperature is propitious to enhance the CO tolerance of catalyst [2], reduce the polarization of the cathode, etc.

Proton exchange membrane, as an important material for PEMFC, is the decisive factor of the working temperature of the PEMFC system. Unfortunately, the present widely used PFSA membranes (such as Nafion series) are improper for High Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC), due to its dehydration and thus low conductivity

under the elevated temperature. Many solutions are proposed to solve the problem, and a lot of membranes are prepared & investigated [3]. These membranes could be divided into two classes: (i) modified PFSA (such as Nafion) membranes incorporated with hydrophilic proton conductive nano particles to improve their conductivity at high temperature and low humidity [2,4–25]; (ii) new membranes that could conduct protons independent of water [26–30]. The former class is the main approach, at present. Among this class, Nafion/SiO₂ composite membrane is intensively studied due to its premium properties for HT-PEMFC [2,6,10,19,22,31,32]. However, incorporation of SiO₂ into Nafion on the one hand enhances the water uptake and thus cell performance of the membrane under high temperature & low humidity, but it

* Corresponding author. Tel.: +86 411 84379051; fax: +86 41184379185.

** Corresponding author. Tel.: +86 411 84379153; fax: +86 41184379185.

E-mail addresses: xjli@dicp.ac.cn (X.-J. Li), zhgshao@dicp.ac.cn (Z.-G. Shao).

blocks the passing of the protons and thus reduces the proton conductivity of the membrane on the other hand.

G. Gnana Kumar, Kee Suk Nahm and et al. investigated Nafion incorporated with SiO_2 which was modified with chlorosulfonic acid [33]. Nafion membranes were immersed in freshly prepared 25wt.% silica and 25wt.% silica sulfuric acid solution for 36h at 60 °C to prepare Nafion/ SiO_2 and Nafion/sulfonated- SiO_2 composite membranes, respectively. The results show that Nafion/ SiO_2 – $\text{O}-\text{SO}_3\text{H}$ membrane possesses higher conductivity than Nafion/ SiO_2 composite membrane.

In our laboratory, L. Wang and et al. prepared Nafion/PTFE, Nafion/PTFE/ SiO_2 , Nafion/PTFE/ SiO_2 – SO_3H (SiO_2 – SO_3H stands for SiO_2 sulfonated with 0.5 M H_2SO_4), and Nafion/PTFE/ SiO_2 –1,3 PS (SiO_2 –1,3 PS stands for SiO_2 sulfonated with 1,3 PS) via re-casting method [34]. The results show that Nafion/PTFE/ SiO_2 – SO_3H and Nafion/PTFE/ SiO_2 –1,3-PS possess lower membrane resistances than Nafion/PTFE, in addition, SiO_2 and SiO_2 – SO_3H were better than SiO_2 –1,3-PS as filler incorporated into Nafion based self-humidified membranes for PEMFC.

Yoichi Tominaga, Shigeo Asai and et al. investigated the proton conductivity of the Nafion based composite membrane incorporated with sulfonated mesoporous silica (signed as Nafion/SMSi) [35]. Sulfonated mesoporous silica was prepared by the surface-treatment of neat mesoporous silica using 3-(trihydroxysilyl)-1-propane-sulfonicacid solution. The results show that the proton conductivity of the Nafion/SMSi is much higher than that of the Nafion/Mesoporous- SiO_2 and pure Nafion.

However, almost all of these membranes reported in literatures were prepared by re-casting method, and inter-action mechanism between the silica and the sulfonating agent during the sulfonation is still unclear. In this paper, Nafion/ SiO_2 composite samples were prepared via in-situ sol–gel method and then sulfonated with concentrated sulfuric acid to obtain Nafion/S- SiO_2 composite membranes. Further, the mechanism of the sulfonation of the Nafion/ SiO_2 composite membrane is investigated in detail with a series of physical characterization approaches such as FT-IR, UV resonance Raman spectroscopy, ^{29}Si solid-state MAS NMR and XRD.

2. Experimental

2.1. Materials & preparation

In this paper, Nafion(NRE212)/ SiO_2 composite membranes were all prepared via in-situ sol–gel reaction of tetraethyl-orthosilicate (TEOS) [36]. The content of the SiO_2 incorporated into Nafion is 8.5 wt.%. All the Nafion/ SiO_2 samples were then treated sequentially with H_2O_2 (5%, 80 °C) for 1 h, de-ionized water for 1 h, and HCl (1.0 M, 80 °C) for 1 h.

Powder SiO_2 nano-particles are also prepared by sol–gel reaction of TEOS, and the detail process was described as literature [37]. The statistical particle size of SiO_2 powder was 25 ± 10 nm, and the surface area was about $640 \pm 30 \text{ m}^2/\text{g}$.

2.2. Sulfonation

Nafion/ SiO_2 composite membranes were dried in vacuum drying chamber for 6 h. Then the samples were soaked in

concentrated H_2SO_4 (98%, 80 °C) for certain time (4, 10, and 16 h) to sulfonate the composite membrane. The concentrated H_2SO_4 treated membranes were then soaked in de-ionized water (80 °C) for 12 h, and rinsed with de-ionized water until the washing water exhibited neutral. In this paper, the Nafion/ SiO_2 sulfonated for 4, 10 and 16 h are signed as Nafion/S- SiO_2 -4h, Nafion/S- SiO_2 -10h and Nafion/S- SiO_2 -16h, respectively.

The powder of SiO_2 nano-particles was also sulfonated by concentrated H_2SO_4 (98%, 80 °C), just as the sulfonation process of Nafion/ SiO_2 composite membrane. For the powder SiO_2 , the sulfonation time was 10 h.

2.3. Water uptake & swelling ratio

For water uptake measurement, in order to remove the residual moisture and water, the membrane was firstly dried in vacuum drying oven for 12 h at 80 °C. Then, the membrane was taken out from the oven and weighed pretty soon. The weight of the dry membrane was signed as W_{dry} . After that, the membrane was soaked in de-ionized water at certain temperature (40, 60, and 80 °C) for 24 h. The weight of the wet membrane was signed as W_{wet} . The water uptake (WU) can be calculated by the following equation:

$$\text{WU} = \frac{W_{\text{wet}} - W_{\text{dry}}}{W_{\text{dry}}} \times 100\% \quad (1)$$

As for swelling ratio evaluation, the process is similar to that of the water uptake measurement. The dry and wet surface area can be signed as S_{wet} and S_{dry} , respectively. The swelling ratio (SR) can be calculated by the Eq. (2):

$$\text{SR} = \frac{S_{\text{wet}} - S_{\text{dry}}}{S_{\text{dry}}} \times 100\% \quad (2)$$

2.4. Proton conductivity

Electrochemical Impedance Spectroscopy (EIS) was carried out to measure the proton conductivities of the membranes, using a Solartron impedance/Gain-phase Analyzer (model SI 1260) combined with a Solartron Electrochemical Interface (model SI 1287). Z-plot and Z-view softwares were used to control the measurement process. The amplitude of the AC signal was 20 mV, and the frequency was set from 100 Hz to 1 MHz. All samples were soaked in de-ionized water at 40 °C for 24 h and then sealed between two carbon-paper electrodes with an area of 0.332 cm^2 for measurement. The conductivity could be calculated using the following equation:

$$\sigma = \frac{L}{R \cdot A} \quad (3)$$

Where, σ is the proton conductivity of the membrane, R is the resistance of the membrane, and the sign L as well as A stands for the thickness of the membrane and the area of the electrode, respectively.

2.5. Single cell performance test

All membrane electrode assemblies (MEAs) were prepared via a hot-pressing process. The gas diffusion electrode (GDE) was prepared first. In the preparation of GDE, carbon paper from Toray, 20 wt. % Pt/C from E-TEK, PTFE suspension and Nafion solution (DuPont, USA) were used. Both the loading of Pt/C

catalyst on the anode and cathode was $0.4 \text{ mg Pt cm}^{-2}$. Then, two pieces of GDE with an effective area of 5 cm^2 were hot-pressed onto one piece of membrane to fabricate a MEA. The hot pressing was performed at 140°C , under a pressure of 1.0 MPa for 1 min. The MEA was sandwiched into a single cell with stainless steel end plates and graphite groove flow fields as current collectors. The performance of the fuel cell was evaluated by I–V curves measurement at a temperature of 110°C , with H_2/O_2 gases at a relative humidity (RH) of 59%. The H_2 and O_2 were fed in co-flow orientation into the fuel cell. The inlet gases were controlled at a fixed rate of $30/120 \text{ ml min}^{-1}$. All MEAs were evaluated under a gage pressure of 0.2 MPa .

2.6. Physical characterizations

2.6.1. FT-IR

The FT-IR spectra of the membranes were collected from 400 cm^{-1} – 1200 cm^{-1} , using a Bruker Vector22 (Bruker Optics, Germany) FT-IR spectrometer at a resolution of 4 cm^{-1} in absorption mode. FT-IR of the powder SiO_2 and sulfonated SiO_2 (S- SiO_2) nano-particles were also performed, in order to avoid the background signal of the Nafion matrix. The IR spectra of the untreated SiO_2 and the sulfonated S- SiO_2 were recorded with potassium bromide tabletting in transmission mode.

2.6.2. UV resonance Raman spectroscopy

UV resonance Raman spectra were recorded at room temperature using a home-made UV resonance Raman spectrograph of State Key Laboratory of Catalysis (Dalian institute of Chemical Physics) at a resolution of 2 cm^{-1} . The laser line at 325 nm of a He–Cd laser was used as an exciting source with an output of 25 mW .

2.6.3. ^{29}Si solid-state MAS NMR

^{29}Si solid-state MAS NMR was used to characterize the structure of the untreated SiO_2 and the sulfonated S- SiO_2 . ^{29}Si solid-state MAS NMR experiments were carried out on a Varian Infinityplus-400 spectrometer operating at a frequency of 79.4 MHz for the ^{29}Si nucleus, with a spinning rate of 4.0 kHz and 2048 scans. The $\pi/2$ pulse width is $2.00 \mu\text{s}$, the receiver delay is $13.33 \mu\text{s}$, and the acquisition time is 28 ms. Chemical shifts were referenced to tetrakis (trimethylsilyl)silane, -9.8 ppm with respect to TMS.

2.6.4. X-ray diffraction

To get the morphological characteristics of the composite membranes, X-ray diffraction (XRD) analysis was carried out using a Panalytical X'pert PRO diffractometer with a $\text{Cu}-\text{K}\alpha$ radiation source. The diffraction patterns were recorded from 10 to 80° .

3. Results and discussion

3.1. Effect of sulfonation on properties of Nafion/ SiO_2 composite membrane

Water uptake, swelling ratio, and proton conductivity are very important properties for PEMFC electrolyte membranes. In this section, the effects of sulfonation on water uptake,

swelling ratio, and proton conductivity of Nafion/ SiO_2 composite membrane are discussed. Then in the Section 3.2, the mechanism of the sulfonation is discussed in correspondence with the results of property testing in this section.

3.1.1. Water uptake

The water uptakes of Nafion, Nafion/ SiO_2 , Nafion/S- SiO_2 -4h, Nafion/S- SiO_2 -10h, and Nafion/S- SiO_2 -16h at 40 , 60 , and 80°C are shown in Fig. 1. It shows that the Nafion/ SiO_2 has a higher water uptake than the unmodified Nafion at the considering temperature region. At the temperature of 80°C , the water uptake of the Nafion is 35% , while Nafion/ SiO_2 has water uptake of 56% , much higher than that of the unmodified Nafion. That should attribute to the hydrophilicity of the SiO_2 nano particles, of which the surface $-\text{OH}$ groups have excellent capability of water maintenance. However, after treatment with concentrated sulfuric acid, the water uptake of the composite membrane decreases. And, it descends synchronously as the sulfonation time ascends.

3.1.2. Swelling ratio

Fig. 2 exhibits the surface area based swelling ratios of Nafion, Nafion/ SiO_2 , Nafion/S- SiO_2 -4h, Nafion/S- SiO_2 -10h, and Nafion/S- SiO_2 -16h at 40 , 60 , and 80°C . It could be seen from Fig. 2 that the swelling ratio of the Nafion/ SiO_2 composite membrane is much higher than that of the unmodified Nafion. For Nafion/ SiO_2 , the presence of the SiO_2 in the Nafion matrix lowers the compactibility & shape-stability of the polymer and thus elevates the swelling ratio of the membrane. From Fig. 2, it is seen that the swelling ratios of sulfonated composite membranes, including Nafion/S- SiO_2 -4h, Nafion/S- SiO_2 -10h, and Nafion/S- SiO_2 -16h, are lower than that of Nafion/ SiO_2 composite membrane. Moreover, as the sulfonation time ascends, the swelling ratio decreases.

3.1.3. Proton conductivity

The EIS plots of the membranes are shown as Fig. 3. It could be seen that the membrane resistance of Nafion/ SiO_2 is higher than that of the unmodified Nafion. It suggests that SiO_2 nano-particles incorporated into the Nafion matrix block the conduction of protons. Therefore, in this paper we sulfonated the Nafion/ SiO_2 composite membrane on the purpose to cover

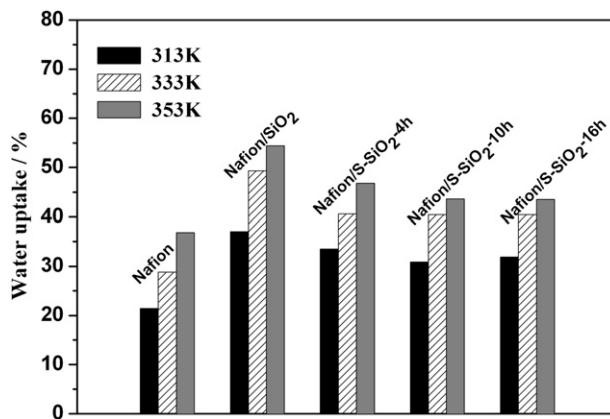


Fig. 1 – Water uptakes of Nafion, Nafion/ SiO_2 and Nafion/S- SiO_2 composite membranes sulfonated for 4h, 10h, and 16h.

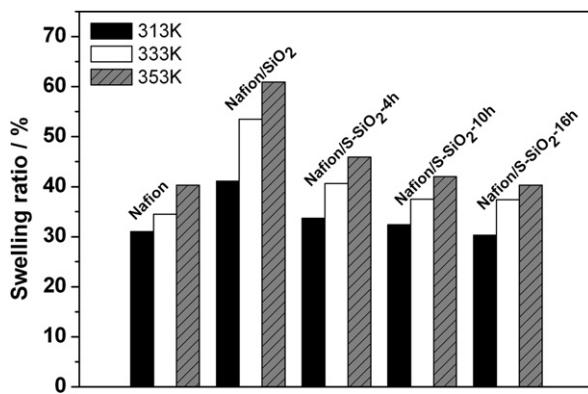


Fig. 2 – Swelling ratios of Nafion, Nafion/SiO₂ and Nafion/S-SiO₂ composite membranes sulfonated for 4 h, 10 h, and 16 h.

the conductivity loss caused by the SiO₂. In Fig. 3, it could be seen that the membrane resistances of the Nafion/S-SiO₂ (4h, 10h, and 16h) composite membranes are lower than that of the un-sulfonated Nafion/SiO₂ composite membrane. It proves that the sulfonation is an effective method to cover the shortcoming of Nafion/SiO₂ composite membrane on proton conductivity.

3.2. Mechanism analysis of sulfonation

In Section 3.1, effects of the sulfonation on the properties of the Nafion/SiO₂ composite membrane are discussed. It is clearly seen that sulfonation on one side elevates the proton conductivity, on the other side lowers the water uptake and swelling ratio of the Nafion/SiO₂ composite membrane. However, the reason remains obscure. This section aims to explain the mechanism of the sulfonation in detail, using the

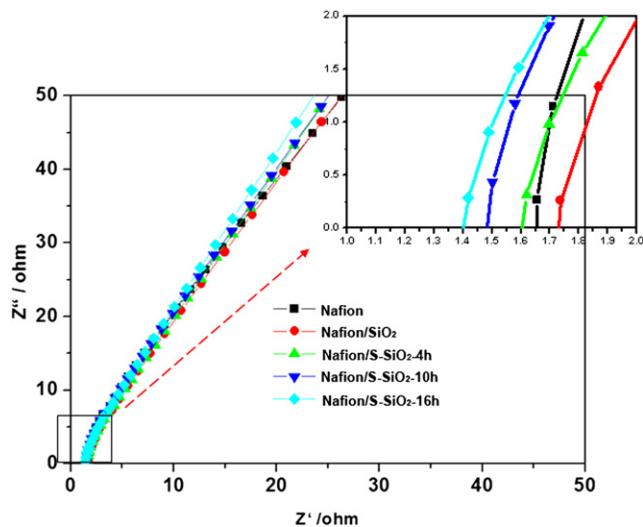


Fig. 3 – Proton conductivities of Nafion, Nafion/SiO₂ and Nafion/S-SiO₂ composite membranes sulfonated for 4 h, 10 h, and 16 h.

experimental results of the FT-IR, UV Resonance Raman spectroscopy, ²⁹Si solid-state MAS NMR and XRD.

3.2.1. FT-IR

Fig. 4(a) exhibits the FT-IR spectra of the Nafion, Nafion/SiO₂, Nafion/S-SiO₂-4h, Nafion/S-SiO₂-10h, and Nafion/S-SiO₂-16h. In fact, as we can see, it is a little difficult to distinguish the structure change of the Nafion/SiO₂ composite membrane after sulfonation from Fig. 4(a). This maybe caused by –SO₃H groups in the side chains of Nafion, which is much adverse for the identification of the –SO₃H that maybe attached to the surface of SiO₂ nano-particles [38]. Therefore, in this experiment, an ex-situ characterization method was adopted. Powder SiO₂ nano-particles were prepared outside the Nafion membrane via a sol–gel reaction of TEOS. Then the obtained SiO₂ was sulfonated (signed as S-SiO₂) by concentrated H₂SO₄ for 10 h at 80 °C as mentioned in Section 2.1. Fig. 4(b) illustrates the spectra of the obtained SiO₂ and sulfonated S-SiO₂. It is shown that the peak at 3400 cm^{–1}, which is the characteristic signal of –OH, is widened after sulfonation. It is generally acknowledged that the widening of the hydroxyl peak is caused by the hydrogen bond [39]. It suggests that there are

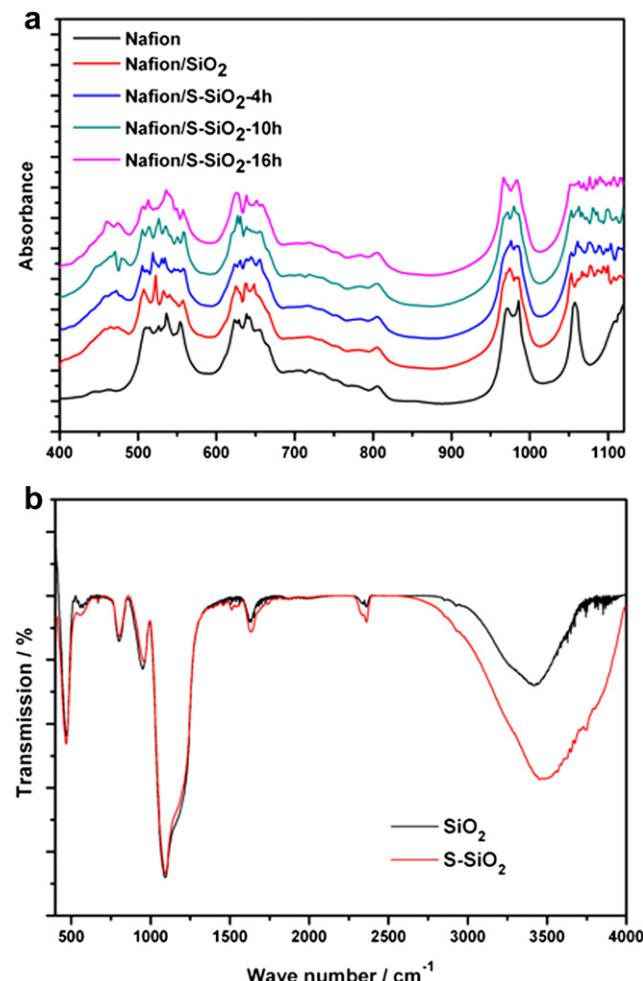
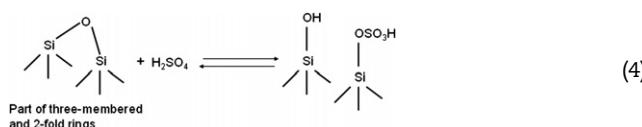
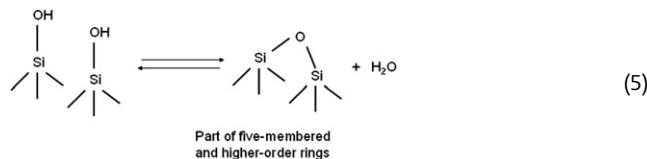


Fig. 4 – (a) FT-IR spectra of Nafion, Nafion/SiO₂ and sulfonated Nafion/S-SiO₂ composite membranes; (b) FT-IR spectra of sol–gel derived SiO₂ and the sulfonated S-SiO₂.


Fig. 5 – UV Raman spectra of sol–gel derived SiO_2 and the sulfonated S-SiO_2 .

strong hydrogen bonds in the sulfonated S-SiO_2 . This should be caused by the inter-action between surface $-\text{OH}$ groups of SiO_2 nano-particles and H_2SO_4 molecules. However, characteristic peaks of the $-\text{SO}_3\text{H}$ group are located in 1000–1100 cm^{-1} [39], which coincides with the strong absorption band of symmetric and anti-symmetric vibration of the $\text{Si}-\text{O}-\text{Si}$. For this reason, the structure signal of $-\text{SO}_3\text{H}$ is not clear by FT–IR.

3.2.2. UV resonance Raman spectroscopy


From FT–IR, it suggests the existence of strong hydrogen bond in the S-SiO_2 . However, whether the $-\text{SO}_3\text{H}$ groups are chemically attached to the surface of the SiO_2 nano-particles, or how the $-\text{SO}_3\text{H}$ groups interact with SiO_2 nano-particles remains unclear. UV resonance Raman spectroscopy (UVRSS) is a powerful tool for surface species detection & identification. Therefore, in this experiment the UVRSS spectra of SiO_2 and S-SiO_2 were recorded, using a home-made UV Raman Resonance Spectrograph. The UVRSS spectra of SiO_2 and S-SiO_2 are shown as Fig. 5. It can be seen that the scattering pattern of SiO_2 is much different from that of the sulfonated S-SiO_2 . For the scattering pattern of the sulfonated S-SiO_2 , the peaks at 873 cm^{-1} and $\sim 620 \text{ cm}^{-1}$ disappear, and a new peak at 710 cm^{-1} emerges. Besides, the band around 400 cm^{-1} is broadened after sulfonation.

It is well known, the scattering peaks at $\sim 620 \text{ cm}^{-1}$ and 873 cm^{-1} could be attributed to the so called D2 defect structure (strained three-membered rings) and strained 2-fold rings (edge-sharing tetrahedra) respectively [40], which form primarily on the silica surface by condensation reactions involving isolated adjacent silanol groups [41]. After sulfonation, the $\sim 620 \text{ cm}^{-1}$ and 873 cm^{-1} peaks disappear, suggesting that a reverse reaction of surface condensation occurs during sulfonation, illustrated as follow.

And the new peak at 710 cm^{-1} should be due to the new surface specie ($\text{Si}-\text{O}-\text{SO}_3\text{H}$) forming, as shown in Eq. (4).

The reason for the broaden band around 400 cm^{-1} after sulfonation is the reconstruction of stable five-membered and higher-order rings, at the expense of smaller strain rings and the condensation of surface hydroxyls [42], illustrated as Eq. (5). It is noteworthy that $\text{Si}-\text{O}-\text{Si}$ bridges in reaction (4) are of three-membered and two-membered rings, while in reaction (5), the $\text{Si}-\text{O}-\text{Si}$ bridges are of five-membered and higher-order rings. The later is more stable, for lower energy state.

From the UVRSS results, it is clearly seen that sulfonation affects the surface structure of the SiO_2 nano-particles to a large degree. The chemical bond assembled between sulfonic group and SiO_2 nano-particles is responsible for covering the proton conductivity loss of the Nafion/ SiO_2 composite membrane.

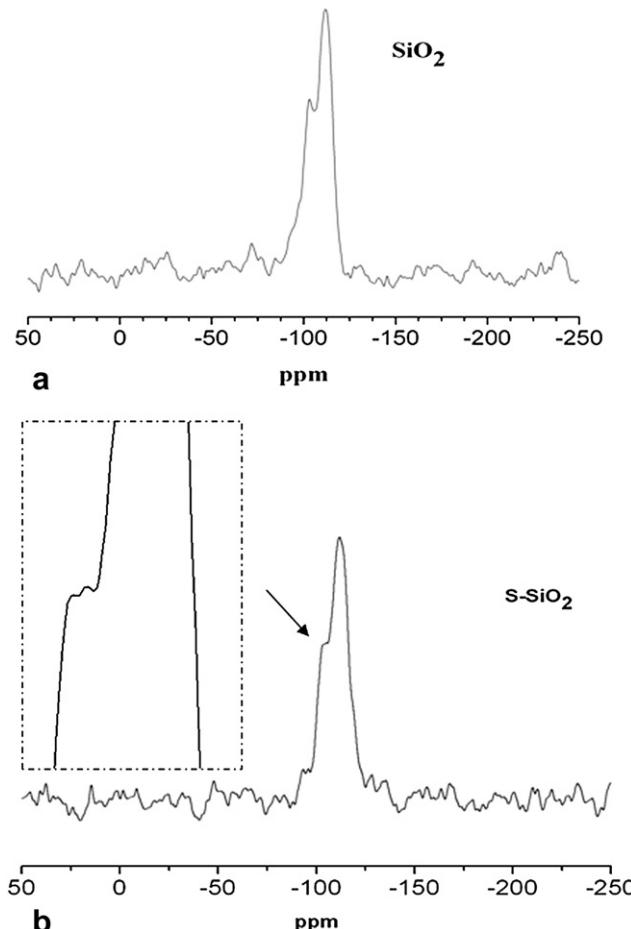
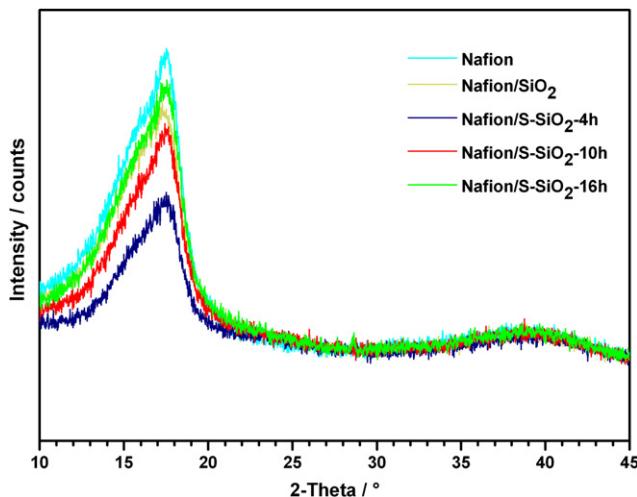



Fig. 6 – ^{29}Si solid-state MAS NMR spectra of sol–gel derived SiO_2 (a) and the sulfonated S-SiO_2 (b).

Fig. 7 – XRD patterns of Nafion, Nafion/SiO₂ and sulfonated Nafion/S-SiO₂ composite membranes.

3.2.3. ²⁹Si solid-state MAS NMR

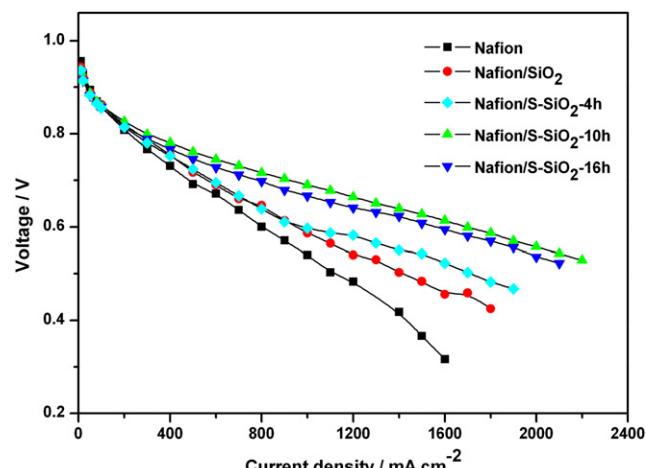
²⁹Si solid-state MAS NMR (SSM-NMR) is a powerful tool for probing the physico-chemical environment of the ²⁹Si atom in silicon-containing material such as silicates, silica gel and silylated silica gel [39].

Fig. 6 exhibits the ²⁹Si SSM-NMR spectra of the untreated SiO₂ and sulfonated SiO₂ (S-SiO₂) samples. According to the literature, the resonance Q³ around $-101 \sim -103$ ppm is attributed to ²⁹Si directly attached to three O–Si bonds, while the resonance Q⁴ around $-110 \sim -112$ ppm is generally accepted as the characteristic signal of ²⁹Si–(O–Si)₄ [43]. For the untreated SiO₂ (shown as Fig. 6 (a)), no peak at -80 ppm is found, it suggests that the TEOS is hydrolyzed completely, which is consistent with the results of FT-IR and UVRSS above. The Q², Q³, Q⁴ resonances at ~ -95 ppm, -103.1 ppm and -111.8 ppm are assigned to (SiO)₂–Si–(OH)₂, (SiO)₃–Si–(OH), and Si–(SiO)₄ [43]. For the sulfonated S-SiO₂, there are two Q² resonance peaks at -93 ppm and -96 ppm, shown as Fig. 6(b). That should be assigned to (SiO)₂–Si–(OH)(OSO₃H), and (SiO)₂–Si–(OH)₂. In addition, two Q³ resonance peaks are found at -103 ppm and -105 ppm, which should be caused by (SiO)₃–Si–OH and (SiO)₃–Si–(OSO₃H), respectively.

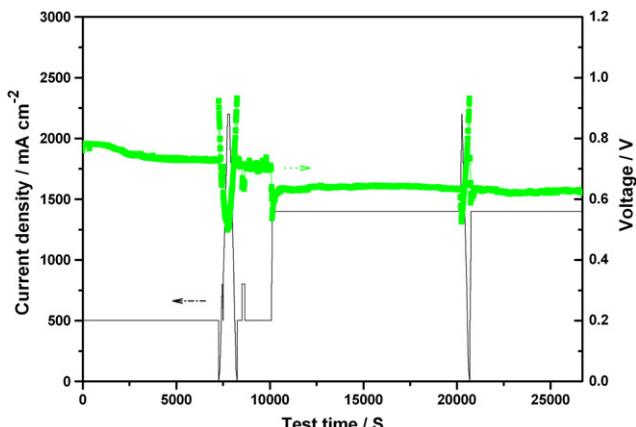
Further, the peak area of each resonance is analyzed by Peak-Fit software, it illuminates the ratio of Q³((SiO)₃–Si–OH)/Q⁴(Si–(SiO)₄) decreases after sulfonation. This suggests that the hydroxyl content of the SiO₂ decreases after sulfonation. That should be caused by the reconstruction of stable five-membered and higher-order rings, as shown in Eq. (5). It is also in accordance with the water-uptake loss of the Nafion/SiO₂ composite membrane after sulfonation.

3.2.4. XRD analysis

X-ray diffraction (XRD) analysis is an effective method to provide morphological information, especially the crystallinity degree of the organic/inorganic composite membranes [9]. Fig. 7 shows the XRD patterns of Nafion, the untreated Nafion/SiO₂ composite membrane and the sulfonated Nafion/S-SiO₂ composite membranes. From the XRD profiles, it could


be seen that there are two broad diffraction peaks at $20 \sim 17^\circ$ and $20 \sim 38^\circ$ or both Nafion and composite membranes. The broad peak at $20 \sim 17^\circ$ could be deconvoluted to two peaks at $20 \sim 16^\circ$ and, $20 \sim 17.5^\circ$ which are assigned to the amorphous and crystallinity scattering from main chain of Nafion, respectively. From the spectra, it's shown that incorporation of SiO₂ decreases the crystallinity of Nafion membrane, which is in opposite to the composite membranes obtained via a recast route. This result is in accordance with that of Ref. [9].

As to the sulfonated Nafion/S-SiO₂ composite membranes, sulfonation makes a crystallinity decline for the membrane in the initial stage of sulfonation, as shown in Fig. 7. It can be seen that Nafion/S-SiO₂-4h possesses the lowest crystallinity in the composite membranes. Then, the crystallinity of the sulfonated membrane increases, as the sulfonation time further ascends. When the sulfonation time comes to 16 h, the crystallinity of the sulfonated membrane approaches to that of the untreated Nafion/SiO₂. The crystallinity change during sulfonation process should be related to the surface structure transition of SiO₂ nano-particles. At the initial stage of sulfonation, the hydroxyl groups on the surface of SiO₂ nano-particles are partly eliminated to form stable five-membered or higher-order rings, which makes the uniformity of the fillers decrease and thus lead to crystallinity reduction of the composite membrane. With the increase of sulfonation time, the 2-fold rings and three-membered rings of SiO₂ are opened, thus the crystallinity grows.


3.3. Single cell test

In the above sections, effects of the sulfonation on the properties of Nafion/SiO₂ composite membrane such as water uptake, swelling ratio and proton conductivity, were investigated. In order to further study the effect of sulfonation on the overall performance of the membrane for PEMFC applications, polarization curves of the unmodified Nafion, untreated Nafion/SiO₂, and sulfonated Nafion/S-SiO₂ were tested with a PEMFC single cell.

Fig. 8 shows the I-V curves of these membranes: Nafion NRE212, Nafion/SiO₂, Nafion/S-SiO₂-4h, Nafion/S-SiO₂-10h,

Fig. 8 – I–V curves of Nafion, Nafion/SiO₂ and sulfonated Nafion/S-SiO₂ composite membranes at 110 °C, 59%RH.

Fig. 9 – Single cell performance of sulfonated Nafion/S-SiO₂-10h composite membrane at constant current density of 500 mA cm⁻² and 1400 mA cm⁻².

and Nafion/S-SiO₂-16h. It can be seen from the Fig. 8 that the PEMFC single cell performance of each of the three sulfonated Nafion/S-SiO₂ membranes is enhanced compared to that of the untreated Nafion/SiO₂ during almost the whole considering current density range, at 110 °C and 59% RH. Particularly, in the high current density region above 800 mA cm⁻², Nafion/S-SiO₂ outperforms the untreated Nafion/SiO₂ significantly. At the current density of 1000 mA cm⁻², the output voltage is measured as 0.598, 0.690, and 0.667 V when the Nafion/SiO₂ membrane is sulfonated for 4, 10, and 16 h, respectively. While for the untreated Nafion/SiO₂, the output voltage is 0.587 V at the same current density. It demonstrates that sulfonation is obviously beneficial to the elevated temperature & low humidity performance of the membranes.

Fig. 9 shows the V-t curve of the single cell with Nafion/S-SiO₂-10h, under a constant current density of 500 mA cm⁻² or 1400 mA cm⁻². After the single cell was activated with 100% RH gases of H₂/O₂, the inflow gases were shifted to 59% RH H₂/O₂. It can be seen, 0.9 h later, the cell reached a constant output performance and noobvious performance reduction was observed during running. It suggests that the interaction between the sulfonic acid and SiO₂ nano-particles is durable under the rigorous environment of HT-PEMFC. However, the lifetime of both Nafion/SiO₂ and the sulfonated Nafion/S-SiO₂ composite membranes need further investigation.

4. Conclusions

In this paper, the sulfonated Nafion/SiO₂ composite membranes were prepared by sulfonation of Nafion/SiO₂ composite membranes with concentrated sulfuric acid. The effects of sulfonation on the properties and single cell performance of Nafion/SiO₂ composite membrane were investigated. Compared to untreated Nafion/SiO₂, the sulfonated Nafion/SiO₂ composite membranes have higher proton conductivities and better single cell performance.

Further, the sulfonation mechanism was investigated in this paper by FT-IR, UV resonance Raman spectroscopy, ²⁹Si

solid-state MAS NMR and XRD. From the results of these physical characterizations, it is suggested that the sulfonation of Nafion/SiO₂ composite membrane is a multiple-reaction process. During this process, the surface –OH groups of the SiO₂ nano-particles are partly eliminated, leading to water uptake loss of the composite membrane. And, the chemical bonds between –SO₃H and the surface of SiO₂ nano-particles are formed, as shown in ²⁹Si solid-state NMR and Raman spectroscopy, which enhance the proton conductivity of the Nafion/S-SiO₂ composite membrane. Besides, hydrogen bonds between SiO₂ nano-particles and sulfuric acid molecules are also found from the analysis of FT-IR results.

This work is of importance in understanding the sulfonation process of the Nafion/SiO₂ composite, and provides a simple method to cover the conductivity loss of the membrane caused by SiO₂.

Acknowledgements

This work was financially supported by the National High Technology Research and Development Program of China (863 Program No. 2007AA05Z131) and the National Natural Science Foundation of China (No. 20206030). In particular, the authors are grateful to Professor Jun-De Wang (Advisory Committee, DICP), Huo-Fei Zhou (Laboratory of Biomedical Material Engineering, DICP), Fang-Jun Wang (CAS Key lab of Separation Science for Analytical Chemistry, DICP), Yan-Xia Qi (Key lab of Separation and analysis, DICP), and Feng-Qiang Xiong (State Key Lab of Catalysis, DICP) for value discussions, suggestions and assistances in the experiments.

REFERENCES

- [1] Marban G, Vales-Solis T. Towards the hydrogen economy? *Int J Hydrogen Energ* 2007;32:1625–37.
- [2] Adjemian KT, Lee SJ, Srinivasan S, Benziger J, Bocarsly AB. Silicon oxide Nafion composite membranes for proton-exchange membrane fuel cell operation at 80–140 degrees C. *J Electrochem Soc* 2002;149:A256–61.
- [3] Peighambarioust SJ, Rowshanzamir S, Amjadi M. Review of the proton exchange membranes for fuel cell applications. *Int J Hydrogen Energ* 2010;35:9349–84.
- [4] Yan XM, Mei P, Mi YZ, Gao L, Qin SX. Proton exchange membrane with hydrophilic capillaries for elevated temperature PEM fuel cells. *Electrochim Commun* 2009;11:71–4.
- [5] Adjemian KT, Dominey R, Krishnan L, Ota H, Majsztrik P, Zhang T, et al. Function and characterization of metal oxide–nafion composite membranes for elevated-temperature H₂/O₂ PEM fuel cells. *Chem Mater* 2006;18:2238–48.
- [6] Deng Q, Moore RB, Mauritz KA. Nafion (R) (SiO₂, ORMOSIL, and dimethylsiloxane) hybrids via in situ sol–gel reactions: characterization of fundamental properties. *J Appl Polym Sci* 1998;68:747–63.
- [7] Shao ZG, Xu HF, Li MQ, Hsing IM. Hybrid Nafion–inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell. *Solid State Ionics* 2006;177:779–85.
- [8] Shao ZG, Joghee P, Hsing IM. Preparation and characterization of hybrid Nafion–silica membrane doped with

phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells. *J Membr Sci* 2004;229:43–51.

[9] Xu WL, Lu TH, Liu CP, Xing W. Low methanol permeable composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells. *Electrochim Acta* 2005;50:3280–5.

[10] Liu Yonghao, Yi Baolian, Zhang Huamin. Study on silicon oxide Nafion composite membranes for proton exchange membrane fuel cell operation. *Chin J Power Sources* 2005;29:92–4, 112.

[11] Jian-Hua T, Peng-Fei G, Zhi-Yuan Z, Wen-Hui L, Zhong-Qiang S. Preparation and performance evaluation of a Nafion–TiO₂ composite membrane for PEMFCs. *Int J Hydrogen Energ* 2008;33:5686–90.

[12] Jung GB, Weng FB, Su A, Wang JS, Yu TL, Lin HL, et al. Nafion/PTFE/silicate membranes for high-temperature proton exchange membrane fuel cells. *Int J Hydrogen Energ* 2008;33:2413–7.

[13] Costamagna P, Yang C, Bocarsly AB, Srinivasan S. Nafion (R) 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 degrees C. *Electrochim Acta* 2002;47:1023–33.

[14] Casciola M, Capitani D, Comite A, Donnadio A, Frittella V, Pica M, et al. Nafion–zirconium phosphate nanocomposite membranes with high filler loadings: conductivity and mechanical properties. *Fuel Cells* 2008;8:217–24.

[15] Yuan JJ, Zhou GB, Pu HT. Preparation and properties of Nafion (R)/hollow silica spheres composite membranes. *J Membr Sci* 2008;325:742–8.

[16] Adjemian KT, Srinivasan S, Benziger J, Bocarsly AB. Investigation of PEMFC operation above 100 degrees C employing perfluorosulfonic acid silicon oxide composite membranes. *J Power Sources* 2002;109:356–64.

[17] Santiago EJ, Isidoro RA, Dresch MA, Matos BR, Linardi M, Fonseca FC. Nafion–TiO₂ hybrid electrolytes for stable operation of PEM fuel cells at high temperature. *Electrochim Acta* 2009;54:4111–7.

[18] Jin YG, Qiao SZ, Zhang L, Xu ZP, Smart S, da Costa JCD, et al. Novel Nafion composite membranes with mesoporous silica nanospheres as inorganic fillers. *J Power Sources* 2008;185:664–9.

[19] Rodgers MP, Shi ZQ, Holdcroft S. Transport properties of composite membranes containing silicon dioxide and Nafion (R). *J Membr Sci* 2008;325:346–56.

[20] Wang L, Yi BL, Zhang HM, Xing DM. Pt/SiO₂ as addition to multilayer SPSU/PTFE composite membrane for fuel cells. *Polym Adv Tech* 2008;19:1809–15.

[21] Alberti G, Casciola M, Capitani D, Donnadio A, Narducci R, Pica M, et al. Novel Nafion–zirconium phosphate nanocomposite membranes with enhanced stability of proton conductivity at medium temperature and high relative humidity. *Electrochim Acta* 2007;52:8125–32.

[22] Lin YF, Yen CY, Ma CCM, Liao SH, Lee CH, Hsiao YH, et al. High proton-conducting Nafion (R)/–SO₃H functionalized mesoporous silica composite membranes. *J Power Sources* 2007;171:388–95.

[23] Amjadi M, Rowshanzamir S, Peighambardoust SJ, Hosseini MG, Eikani MH. Investigation of physical properties and cell performance of Nafion/TiO₂ nanocomposite membranes for high temperature PEM fuel cells. *Int J Hydrogen Energ* 2010;35:9252–60.

[24] Pan JJ, Zhang HN, Chen W, Pan M. Nafion–zirconia nanocomposite membranes formed via in situ sol–gel process. *Int J Hydrogen Energ* 2010;35:2796–801.

[25] Sen U, Celik SU, Ata A, Bozkurt A. Anhydrous proton conducting membranes for PEM fuel cells based on Nafion/Azole composites. *Int J Hydrogen Energ* 2008;33:2808–15.

[26] Li QF, He RH, Jensen JO, Bjerrum NJ. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 degrees C. *Chem Mater* 2003;15:4896–915.

[27] Li QF, Rudbeck HC, Chromik A, Jensen JO, Pan C, Steenberg T, et al. Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes. *J Membr Sci* 2010;347:260–70.

[28] Bandlamudi GC, Saborni M, Beckhaus P, Mahlendorf F, Heinzel A. PBI/H₃PO₄ gel based polymer electrolyte membrane fuel cells under the influence of reformates. *J Fuel Cell Sci Tech* 2010;7:014501–2.

[29] Boysen DA, Chisholm CRI, Haile SM, Narayanan SR. Polymer solid acid composite membranes for fuel-cell applications. *J Electrochem Soc* 2000;147:3610–3.

[30] Zheng HT, Petrik L, Mathe M. Preparation and characterisation of porous poly(2,5benzimidazole) (ABPBI) membranes using surfactants as templates for polymer electrolyte membrane fuel cells. *Int J Hydrogen Energ* 2010;35:3745–50.

[31] Yen CY, Lee CH, Lin YF, Lin HL, Hsiao YH, Liao SH, et al. Sol–gel derived sulfonated-silica/Nafion (R) composite membrane for direct methanol fuel cell. *J Power Sources* 2007;173:36–44.

[32] Tang H, Wan Z, Pan M, Jiang SP. Self-assembled Nafion–silica nanoparticles for elevated-high temperature polymer electrolyte membrane fuel cells. *Electrochim Commun* 2007;9:2003–8.

[33] Kumar GG, Kim AR, Nahm KS, Elizabeth R. Nafion membranes modified with silica sulfuric acid for the elevated temperature and lower humidity operation of PEMFC. *Int J Hydrogen Energ* 2009;34:9788–94.

[34] Wang L, Zhao D, Zhang HM, Xing DM, Yi BL. Water-retention effect of composite membranes with different types of nanometer silicon dioxide. *Electrochim Solid St* 2008;11:B201–4.

[35] Tominaga Y, Hong IC, Asai S, Sumita M. Proton conduction in Nafion composite membranes filled with mesoporous silica. *J Power Sources* 2007;171:530–4.

[36] Mauritz KA, Stefanithis ID, Davis SV, Scheetz RW, Pope RK, Wilkes GL, et al. Microstructural evolution of a silicon-oxide phase in a perfluorosulfonic acid ionomer by an in-situ sol–gel reaction. *J Appl Polym Sci* 1995;55:181–90.

[37] Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in micron size range. *J Colloid Interf Sci* 1968;26:62–9.

[38] He XC, Tang HL, Pan M. Synthesis and performance of water-retention PEMs with Nafion-intercalating-montmorillonite hybrid. *J Appl Polym Sci* 2008;108:529–34.

[39] Silverstein RM, Webster FX, Kiemle DJ. Spectrometric identification of organic compounds. 7th ed. New York: John Wiley & Sons; 2005.

[40] Brinker CJ, Kirkpatrick RJ, Tallant DR, Bunker BC, Montez B. NMR confirmation of strained defects in amorphous silica. *J Non-Cryst Solids* 1988;99:418–28.

[41] Brinker CJ, Tallant DR, Roth EP, Ashley CS. Sol–gel transition in simple silicates .3. Structural studies during densification. *J Non-Cryst Solids* 1986;82:117–26.

[42] Brinker CJ, Scherer GW. Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press; 1990.

[43] Young SK, Jarrett WL, Mauritz KA. Nafion (R)/ORMOSIL nanocomposites via polymer-in situ sol–gel reactions. 1. Probe of ORMOSIL phase nanostructures by Si-29 solid-state NMR spectroscopy. *Polymer* 2002;43:2311–20.